Medical image reconstruction using a multi-objective genetic local search algorithm

نویسندگان

  • Xiaodong Li
  • Tianzi Jiang
  • David J. Evans
چکیده

Image reconstruction from projections is a key problem in medical image analysis. In this paper, we cast image reconstruction from projections as a multi-objective problem. It is essential to choose some proper objective functions of the problem. We choose the square error, smoothness of the reconstructed image, and the maximum entropy as our objective functions of the problem. Then we introduce a hybrid algorithm comprising of multi-objective genetic and local search algorithms to reconstruct the image. Our algorithm has remarkable global performance. Our experiments show that we can get diierent results when we give diierent weights to diierent objective functions. We can also control the noise by giving diierent weights on diierent objective function. At the same time, we can adjust the parameter to let it have good local performance. Though the computation demands of the hybrid algorithm tends to be larger because of the random search of the GA, it is really a common feature of the global optimization method. Our results show that the hybrid algorithm is a more eeective than the conventional method. We think our method is very promising for the medical imaging eld.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm

This paper  presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...

متن کامل

A Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms

In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...

متن کامل

Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search

A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production manag...

متن کامل

Using a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models

The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...

متن کامل

Multi-Objective Tabu Search Algorithm to Minimize Weight and Improve Formability of Al3105-St14 Bi-Layer Sheet

Nowadays, with extending applications of bi-layer metallic sheets in different industrial sectors, accurate specification of each layer is very prominent to achieve desired properties. In order to predict behavior of sheets under different forming modes and determining rupture limit and necking, the concept of Forming Limit Diagram (FLD) is used. Optimization problem with objective functions an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2000